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1. Summary 
 

Plankton identification is a time-consuming and tedious task for scientists, but is 
important for better understanding ocean ecosystems. In this paper we attempt to 
improve this process with an algorithm that can identify and classify plankton based on 
their shape, using image processing and principal components analysis (PCA) to identify 
and compare the key features of each species. We achieve 26% accuracy, confirming the 
findings of Tang et al (2006) [1] that using a single feature vector will not produce 
accurate enough results for use in a scientific setting. To improve this algorithm, as Tang 
and team do in their study, we recommend performing multiple analyses of different 
features and doing PCA across those features.  

2. Introduction 

Background  
Image classification is becoming widely used in wildlife identification. One of the 

primary uses is being able to collect data without disrupting animals. Organizations like 
WildTrack and Ocean Alliance use it to noninvasively identify wildlife through 
footprints, features, and markings [6][7]. Classification of plankton samples is a logical 
extension of this technology. Classifying plankton is one of the most time-consuming jobs 
associated with studying plankton, and several attempts have been made to make a 
reliable algorithm to perform this task, using PCA [1], or multiple kernel learning [2], [3].  

Algorithm  
The algorithm we are reproducing is described by Tang et al. (2006) [1]. It 

identifies the outline of plankton in an image. It then computes the centroid of the shape 
and the geodesic distance from each boundary pixel to the center of the shape. When 
plotted, this gives an “unwrapped” version of the plankton image. By performing a 
discrete Fourier transform on this function, we can express the plankton shape as a 
series of frequencies, and then perform principal component analysis to identify the key 
features of the plankton. These can then be compared to the key features of unknown 
plankton to classify them. Using the Fourier transform method means that the 
orientation of the plankton in the initial image does not matter.  



 

Ethical Implications  
This technology has vast potential to help scientists in the area of marine study. 

Plankton are often a good indicator of the overall health of an ocean ecosystem. Being 
able to rapidly count and classify plankton would allow scientists to cut down on the 
amount of man-hours currently being put into tedious plankton classification, which 
would better utilize grant resources.  
 

The harmful implications of this technology are largely negligible if a high enough 
accuracy can be achieved. Since the training data would be composed of plankton 
images, it is unlikely that there would be ethical problems with this technology with 
regards to humans. However, it would be important to make sure the algorithm is 
trained on all the plankton that could potentially be found in an area. The most 
immediate danger this represents is mass misclassification of a species as another 
species, which could lead to inaccurate conclusions about an ecosystem or species being 
studied, as well as comprising scientific integrity.  

Question  
In this paper, we investigate the question of whether plankton classification by 

image can reach a high enough accuracy to be useful to scientists and avoid the 
aforementioned concerns. Specifically, we attempt to identify plankton by performing 
PCA on a Fourier descriptor of the image. We aim to replicate the results of Tang et al., 
while using more recent plankton image data collected by the Woods Hole 
Oceanographic Institution.  

3. Methods 
Our algorithm attempts to classify plankton using principal components analysis, 

which breaks data down into eigenvectors that represent the directions of greatest 
variation. We can then project the test and training data onto these vectors, which 
transforms them into blobspace. This allows us to compare the blobspace test images 
with the blobspace training images, and classify the test images as the same species as 
the nearest training images.  

However, our data set requires processing before the principal components 
analysis can take place. The images we have contain plankton in many different 
rotations, positions, and sizes. This means that a pixel-to-pixel analysis of raw plankton 
images would not be able to accurately compare plankton as one could compare objects 
that are usually in the same orientation, like faces. To process the data, we first reduced 
each plankton image down to the outline of the plankton and its centroid, found the 
geodesic distance between the centroid and the border pixels, and performed a Fourier 



 

transform. This presents each image as a frequency, which does not reflect confounding 
factors such as rotation or position.  

An overview of our process can be seen in the diagram below: 

 

Part 1: Image Processing  
 

The training data for this algorithm was collected from the Woods Hole 
Oceanographic Institution’s open source annotated image archive, specifically 
designated for this purpose [4]. Our image processing procedure is as follows: the 
program takes in grayscale images of plankton (figure 1). We apply a median filter, 
which replaces each pixel with the median of the surrounding pixels, eliminating some 
of the noise. The images are then binarized, turning them to only black and white, 
represented by 0s (black) and 1s (white) (figure 2). We then continue cleaning the image 
by determining the connected components in the image and deleting all but the largest. 
This leaves us with only the outline of the plankton (figure 3).  



 

  
  

Part 2: Computation 
Once the outline has been determined, the centroid is calculated (figure 4). The 

outline is traced in order to assign an index to each pixel. The indexes must be sequential 
along the shape outline in order to plot the distances for each point correctly and obtain 
the “unwrapped” shape of the plankton. The geodesic distance from each pixel in the 
boundary to the centroid is calculated and stored in a vector [5]. Geodesic distance was 
used instead of Euclidean because geodesic distance allows us to find the shortest 
distance within a boundary. While the example shown in the figures is roughly circular, 
the majority of plankton are shaped such that Euclidean distance would cut through the 
border of the plankton, inaccurately representing its shape. When plotted against the 
pixel index, these distances give us a visualization of the “unwrapped” plankton shape. 
The data from these unwrapped images were repeated until all images were the same 
length. This allowed us to compare all the images to each other.  

Finally, a Discrete Fourier Transform was performed on the distances vector, 
allowing us to express the shape of the plankton as frequencies. By expressing the 
plankton as frequencies rather than pixels, we can compare plankton without 
interference from rotation or photograph size, but by shape alone.  



 

Part 3: PCA  
First, to perform principal component analysis (PCA), we represent the training 

data in a matrix A, an n x m matrix where each row contains the Fourier values for an 
image as computed in the previous section.  

Next, calculate the covariance matrix, R, of A:  
 

  R =  1
N * A

T
* A (1) 

 
 The covariance matrix is effectively a correlation matrix that retains the 

magnitude of the data. The eigenvalues, λ, and the eigenvectors, Q, can then be 
calculated such that λ is a diagonal matrix containing the eigenvalues λ 1, λ 2 … λ N 
and Q is a square matrix where each column contains eigenvectors v1, v2...vN of length 1. 
The eigenvector corresponding to the largest eigenvalue points in the direction of the 
greatest variation in the data, the second largest points orthogonal to the first and in the 
direction of the second greatest variation in the data, and so on. These represent the 
principal components of the data. We can then project our data onto the principal 
components into what we will call blobspace using the following equation:  

 

.lobspace Q  b =  T * A T   (2) 
 
To test the algorithm, we perform the same operations on a set of test data, but 

this time project it into the blobspace defined by the training data. We then use the 
k-nearest neighbors (kNN) algorithm to classify the test data. This means that an 
unknown plankton will be classified as whatever species it is closest to in blobspace. We 
can also test different numbers of nearest neighbors to see which produces the highest 
accuracy. With multiple nearest neighbors, the k nearest neighbors are considered. 
Whichever there are most of is what the plankton is classified as. For instance, if k=5, 
and 1 nearest neighbor is one species and 4 are a second species, the plankton will be 
classified as the second species.  

4. Detailed Findings 
To test our algorithm, we used 2157 training images and 1262 test images, 

encompassing 12 different species of plankton. These species were chosen arbitrarily 
from the available test images.  

We determined the accuracy of our algorithm by dividing the number of images 
classified correctly by the number of images classified. Our algorithm obtained no higher 
than 26% accuracy, as shown in the figure below.  



 

 
 
The accuracy increased significantly as the number of principal components used 
increased from 0 to about 5. It continued to increase from 5 to about 10, where it 
approximately leveled off. This requires significantly more eigenvectors to achieve the 
accuracy that Tang’s team achieved with only a few, and its peak accuracy is 
considerably lower than Tang’s team found, even using only the Fourier transform 
method. This difference in accuracy is likely due to differences in the quality of our data 
as compared to Tang’s. 

Most of this inaccuracy is due to the differing resolution between the images. 
Differing resolutions between the images mean that if there are two pictures of each 
image where one has twice the resolution of the other, the higher resolution picture will 
have twice the number of points in its outline. Because we needed a matrix with 
transforms of the same length in order to perform PCA, we took the size of the largest 
image and had all the other images repeat their elements until they were the same length 
as the longest image. Using this system would make the above hypothetical image with 
half the resolution and thus half the number of boundary pixels look like its frequencies 
were twice those of the higher resolution image. This would make the two images appear 
completely differently in the Fourier transform, even though they are from the same 
species, and would likely result in the incorrect classification of the images.  

In addition, although plankton can vary greatly in size, this is not identifiable in 
the image without scale reference. Because the Fourier transform represents the pixel 



 

distance from the centroid to the boundary at each frequency, this means a very small 
plankton would appear the same as a very large plankton with a similar shape in a 
similarly sized image.  

Due to these limitations, we have confirmed what Tang’s team found, which is 
that principal component analysis of Fourier descriptors alone is not an accurate enough 
tool to be helpful to scientists in classifying plankton. It would ultimately take more time 
to double check the accuracy of the algorithm than to simply classify all species by hand. 
The harmful implications of this technology are still minimal with regards to humans, 
especially as the algorithm cannot correctly classify the majority of the plankton data it 
was given. However, the implications with regards to studies are more serious. Our 
algorithm is only trained on twelve species of plankton and does not achieve an accuracy 
above 50%. This could lead to misclassification of any plankton the algorithm is not 
trained on, yielding misleading results about ecosystems being studied. Using an 
algorithm this limited and inaccurate would certainly compromise the scientific integrity 
of the study in which it was used.  

A smaller thing that could improve the accuracy of our algorithm is to make a 
more sophisticated image pre-processing procedure. The current system is unreliable 
and cannot determine the difference between image noise and plankton composed of 
multiple pieces.  

In terms of larger structural changes to improve accuracy, one of the most 
important changes would be to find a way to normalize the images for scale and 
resolution, so that those factors do not influence the Fourier function as mentioned 
above. In addition, we would want to consider other features such as moment invariants 
(parts of an image that do not change with translation, rotation, or scale), and possibly 
color. As suggested by Tang’s work, combining vectors that contain multiple different 
methods of feature analysis could produce a greater accuracy than any one method of 
feature analysis.  

5. Recommendations 
Overall, though our algorithm did achieve some success, it is far from a model that 

could be used by plankton researchers. However, there are many ways in which the 
algorithm could be improved which were beyond the scope of this project. Currently, the 
size and coloration of the image is not accounted for when classifying, in an expansion of 
this algorithm, different feature vectors could be analyzed and combined to express this. 
Furthermore, normalizing the scale and resolution of the images would improve our 
results.  

Although our algorithm in its current stages is not very useful in a scientific 
context, other more accurate plankton classification systems are being developed and 
will likely be used by researchers in the near future. The development of these systems 
has the potential to greatly help scientists studying marine ecosystems, saving them 



 

hours of laborious classification and allowing them to allocate their resources to other 
areas.  
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